Greater Everglades Amphibians Model Requirements Document

Version 2

SPECIES

This version of the Amphibian model will be looking at the following species: Cricket Frog, Oak Toad, Southern Toad, Greenhouse Frog, Eastern Narrowmouth, Green Treefrog, Squirrel Treefrog, Pig Frog, Leopard Frog, Cuban Treefrog, Chorus Frog, Little Grass Frog.

INPUTS

Two types of input data layers are required to run the model: hydrology and vegetation.

Hydrology

The hydrology data will be in netCDF format and contain contiguous time steps and measured in units of meters or centimeters.

Vegetation

This input dataset is a raster with each cell coded to represent a type of vegetation.

This specific vegetation input data that are being used were developed by Drs. Steve Friedman and Leonard Pearlstine of the National Park Service. A Geographic Information System was used to condense 60 vegetation classification schemes into 9 major habitat types: Cypress, Hammock, Mangrove, Pineland, Marsh/Rocky Glades, Slough, Borrow Pit/Canal, Building/Road and Dwarf Cypress Prairie over 500m grids.

OUTPUTS

Three map type outputs will be produced. Habitat Suitability Index (HSI) values will be generated for each individual species for each hydrological year. Species occurrence will be generated for each species for each year. Finally, a sum across all species will be generated (species richness).

Output	Inputs	Time Resolution	Type of output
1 -	Hydro-period (water depth)	Time Step	Мар
Reclassified	Vegetation raster	Static	Map

vegetation raster			
HSI for each species for each year	Hydro-period, Beta values, Vegetation	Time Step	Мар
Species Occurrence for each species for each year	HSI	Time Step	Map
Species Richness for each year	Species Occurrence	Time Step	Map

1. Hydro-period

The hydro-period is measured as the number of days of inundation (water depth > 5cm) per hydrological year (June 1st of current year to May 31st of following year). This layer will be produced from the water depth netCDF input data. The data will be in raster format and contain contiguous time steps and measured in units of meters or centimeters. The hydro-period must then be transformed using the following equation to input into the linear model found within the Probability of Occurrence section:

$$Hydroperio d = \frac{(Hydroperio d - 195.5048)}{119.5554}$$

2. Vegetation (Land Cover)

This version of amphibian model will use the given input vegetation dataset to further classify into the following vegetation classes: Swamp, Prairie, Slough, Pineland, and Hammock. This model will not compute values for cells of type Building or Borrow Pit/Canal. See below for the new vegetation classes:

1	Mangrove	Swamp
2	Rocky Glades Marsh	Prairie
3	Slough	Slough
4	Cypress	Swamp
5	Dwarf Cypress Prairie	Prairie
6	Pineland	Pineland
7	Hammock	Hammock
8	Building	Not Used
9	Borrow Pit/Canal	Not Used

Each vegetation class is denoted by a beta number as below:

Swamp	<i>b</i> 5
Slough	b 4
Prairie	b з
Pineland	b 2
Hammock	b 1

The beta values for each vegetation class are provided in the tables given at the end of this document.

3. Probability of Occurrence (HSI)

Site occupancy modeling was used to estimate the relationship between the probability of occurrence (modeled below as psi (ψ) ; interpreted for this model as HSI) for each species and the categorical habitat variable and the continuous hydro-period variable. This produces a linear model that can be used to derive the estimate of psi for any cell as long as habitat and hydro-period inputs are available.

The method for doing this is to first obtain the habitat category of the cell and the hydroperiod for the year. Those numbers are then inserted into the below equation:

 $logit(\psi_i) = b_{0i} + b_{1i}Hammock + b_{2i}Pineland + b_{3i}Prairie + b_{4i}Slough + b_{5i}Swamp + b_{6i}Hydroperiod$

See below tables for b values.

The model should run a separate equation for each species (*i*). The habitat in each cell can take one of the five values, so the other habitats are removed from the equation so that only one of the betas 1-5 are used in any cell.

Finally to convert the logit of the psi value to a number on the real scale we use the following formula:

$$\frac{e^{x}}{1+e^{x}}$$

Where *x* is the value from the linear model.

This result will be a value between 0 and 1 that represents the probability of occurrence or the habitat suitability of the cell for the species.

4. Species Occurrence

The resulting HSI can then be used to draw from a binomial distribution with probability of success (i.e. probability of value = 1) = HSI. Thus occurrence of the species at the site is stochastic but based on real estimates of occurrence probability derived from our

original sample data. This result will be either a 0 or a 1.

5. Species Richness

The species richness indicates the expected number of species present in each individual cell for every time step. This value will be computed by summing the species occurrence value across all species for each cell for each year. This result will be a value between 0 and 12.

TABLES

Cricket Frog	3.0168
Oak Toad	-3.5193
Southern Toad	-0.7815
Greenhouse Frog	-1.8984
Eastern Narrowmouth	1.6773
Green Treefrog	5.2016
Squirrel Treefrog	0.081
Pig Frog	3.2213
Leopard Frog	4.1996
Cuban Treefrog	-0.8507
Chorus Frog	-4.9719
Little Grass Frog	-2.4534

Table 1 b₀ Intercept Values

Cricket Frog	-0.3856
Oak Toad	-3.1593
Southern Toad	8.4835
Greenhouse Frog	5.6513
Eastern Narrowmouth	5.0505
Green Treefrog	2.432
Squirrel Treefrog	1.6684
Pig Frog	5.8635
Leopard Frog	3.2771
Cuban Treefrog	1.841
Chorus Frog	1.3815
Little Grass Frog	-3.0082

Table 2 b₁ Hammock Values

Cricket Frog	1.6401
Oak Toad	6.9671
Southern Toad	2.4239
Greenhouse Frog	6.3336
Eastern Narrowmouth	2.7542
Green Treefrog	4.3316
Squirrel Treefrog	6.3128
Pig Frog	0.7017
Leopard Frog	4.5497
Cuban Treefrog	2.3202
Chorus Frog	1.8318
Little Grass Frog	4.2

Table 3 b₂ Pineland Values

Cricket Frog	0.6952
Oak Toad	4.1045
Southern Toad	-1.304
Greenhouse Frog	-2.7673
Eastern Narrowmouth	-4.942
Green Treefrog	5.7071
Squirrel Treefrog	2.511
Pig Frog	2.4821
Leopard Frog	4.0802
Cuban Treefrog	-8.5608
Chorus Frog	1.2464
Little Grass Frog	8.5677

Table 4 b 3 Prairie Values

Cricket Frog	4.3762
Oak Toad	-4.0175
Southern Toad	0.2389
Greenhouse Frog	-5.0071
Eastern Narrowmouth	-0.4293
Green Treefrog	3.0558
Squirrel Treefrog	-4.0568
Pig Frog	4.263
Leopard Frog	1.7588
Cuban Treefrog	0.1605
Chorus Frog	-2.8771
Little Grass Frog	-3.155

Table 5 b 4 Slough Values

Cricket Frog	3.469
Oak Toad	-1.2063
Southern Toad	-1.0831
Greenhouse Frog	-0.1038
Eastern Narrowmouth	3.5451
Green Treefrog	1.6173
Squirrel Treefrog	1.0418
Pig Frog	0.9316
Leopard Frog	1.747
Cuban Treefrog	3.8709
Chorus Frog	-0.385
Little Grass Frog	0.2701

Table 6 b 5 Swamp Values

Cricket Frog	0.7697
Oak Toad	-3.454
Southern Toad	-6.4881
Greenhouse Frog	-1.6686
Eastern Narrowmouth	-7.3085
Green Treefrog	1.657
Squirrel Treefrog	0.8339
Pig Frog	2.9188
Leopard Frog	0.3063
Cuban Treefrog	-4.1393
Chorus Frog	-5.5992
Little Grass Frog	2.1152

Table 7 b 6 Hydro Values